Wavelet Decomposition of Calderon - Zygmund Operators on Function Spaces

نویسندگان

  • LIXIN YAN
  • A. H. Dooley
  • Lixin Yan
چکیده

We make use of the Beylkin-Coifman-Rokhlin wavelet decomposition algorithm on the CalderonZygmund kernel to obtain some fine estimates on the operator and prove the T(\) theorem on Besov and Triebel-Lizorkin spaces. This extends previous results of Frazier et at., and Han and Hofmann. 2000 Mathematics subject classification: primary 42B20, 46B30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Proof of the Sharp Weighted Estimate for Calderon-zygmund Operators on Homogeneous Spaces

Here we show that Lerner’s method of local mean oscillation gives a simple proof of theA2 conjecture for spaces of homogeneous type: that is, the linear dependence on the A2 norm for weighted L 2 Calderon-Zygmund operator estimates. In the Euclidean case, the result is due to Hytönen, and for geometrically doubling spaces, Nazarov, Rezinikov, and Volberg obtained the linear bound.

متن کامل

Continuity for some multilinear operators of integral operators on Triebel-Lizorkin spaces

The continuity for some multilinear operators related to certain fractional singular integral operators on Triebel-Lizorkin spaces is obtained. The operators include Calderon-Zygmund singular integral operator and fractional integral operator. 1. Introduction. Let T be a Calderon-Zygmund singular integral operator; a well-known result of Coifman et al. (see [6]) states that the commutator [b, T...

متن کامل

Compact composition operators on certain analytic Lipschitz spaces

We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.

متن کامل

On the Classification of Homogeneous Multipliers Bounded on 77'(r2)

Necessary and sufficient conditions for Calderon-Zygmund singular integral operators to be bounded operators on //' (R2) are investigated. Let m be a bounded measurable function on the circle, extended to R2 by homogeneity (m(rx) = m(x)). If the Calderon-Zygmund singular integral operator Tm , defined by Tmf = y_1C"^"(/)), is bounded on //'(R2), then it is proved that S'm has bounded variation ...

متن کامل

Applications of Time-frequency Analysis in Ergodic Theory

The classical paradigm of Calderon and Zygmund provides a set of techniques invariant under translations and dilations that allow to prove estimates for operators acting on function spaces on IR. We focus on the real line as underlying space and further concentrate on estimates for operators that are themselves invariant under translation and dilation. The only such operators bounded on L(R) ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003